Stars are an important topic of astronomical research. Stars are balls of gas that shine or used to shine because of nuclear fusion in their cores. The most familiar star is the Sun. The nuclear fusion in stars produces a force that pushes the material in a star outward. However, the gravitational attraction of the star’s material for itself pulls the material inward. A star can remain stable as long as the outward pressure and gravitational force balance. The properties of a star depend on its mass, its temperature, and its stage in evolution.
Astronomers study stars by measuring their brightness or, with more difficulty, their distances from Earth. They measure the “color” of a star—the differences in the star’s brightness from one part of the spectrum to another—to determine its temperature. They also study the spectrum of a star’s light to determine not only the temperature, but also the chemical makeup of the star’s outer layers.
Kinds of Stars
Many different types of stars exist. Some types of stars are really just different stages of a star’s evolution. Some types are different because the stars formed with much more or much less mass than other stars, or because they formed close to other stars. The Sun is a type of star known as a main-sequence star. Eventually, main-sequence stars such as the Sun swell into giant stars and then evolve into tiny, dense, white dwarf stars. Main-sequence stars and giants have a role in the behavior of most variable stars and novas. A star much more massive than the Sun will become a supergiant star, then explode as a supernova. A supernova may leave behind a neutron star or a black hole.
In about 1910 Danish astronomer Ejnar Hertzsprung and American astronomer Henry Norris Russell independently worked out a way to graph basic properties of stars. On the horizontal axis of their graphs, they plotted the temperatures of stars. On the vertical axis, they plotted the brightness of stars in a way that allowed the stars to be compared. (One plotted the absolute brightness, or absolute magnitude, of a star, a measurement of brightness that takes into account the distance of the star from Earth. The other plotted stars in a nearby galaxy, all about the same distance from Earth.) The resulting Hertzsprung-Russell diagram, also called an H-R diagram or a color-magnitude diagram (where color relates to temperature), is a basic tool of astronomers.
Astronomers study stars by measuring their brightness or, with more difficulty, their distances from Earth. They measure the “color” of a star—the differences in the star’s brightness from one part of the spectrum to another—to determine its temperature. They also study the spectrum of a star’s light to determine not only the temperature, but also the chemical makeup of the star’s outer layers.
Kinds of Stars
Many different types of stars exist. Some types of stars are really just different stages of a star’s evolution. Some types are different because the stars formed with much more or much less mass than other stars, or because they formed close to other stars. The Sun is a type of star known as a main-sequence star. Eventually, main-sequence stars such as the Sun swell into giant stars and then evolve into tiny, dense, white dwarf stars. Main-sequence stars and giants have a role in the behavior of most variable stars and novas. A star much more massive than the Sun will become a supergiant star, then explode as a supernova. A supernova may leave behind a neutron star or a black hole.
In about 1910 Danish astronomer Ejnar Hertzsprung and American astronomer Henry Norris Russell independently worked out a way to graph basic properties of stars. On the horizontal axis of their graphs, they plotted the temperatures of stars. On the vertical axis, they plotted the brightness of stars in a way that allowed the stars to be compared. (One plotted the absolute brightness, or absolute magnitude, of a star, a measurement of brightness that takes into account the distance of the star from Earth. The other plotted stars in a nearby galaxy, all about the same distance from Earth.) The resulting Hertzsprung-Russell diagram, also called an H-R diagram or a color-magnitude diagram (where color relates to temperature), is a basic tool of astronomers.